Detecting Management Fraud in Public Companies
نویسندگان
چکیده
T his paper provides a methodology for detecting management fraud using basic financial data. The methodology is based on support vector machines. An important aspect therein is a kernel that increases the power of the learning machine by allowing an implicit and generally nonlinear mapping of points, usually into a higher dimensional feature space. A kernel specific to the domain of finance is developed. This financial kernel constructs features shown in prior research to be helpful in detecting management fraud. A large empirical data set was collected, which included quantitative financial attributes for fraudulent and nonfraudulent public companies. Support vector machines using the financial kernel correctly labeled 80% of the fraudulent cases and 90.6% of the nonfraudulent cases on a holdout set. Furthermore, we replicate other leading fraud research studies using our data and find that our method has the highest accuracy on fraudulent cases and competitive accuracy on nonfraudulent cases. The results validate the financial kernel together with support vector machines as a useful method for discriminating between fraudulent and nonfraudulent companies using only publicly available quantitative financial attributes. The results also show that the methodology has predictive value because, using only historical data, it was able to distinguish fraudulent from nonfraudulent companies in subsequent years.
منابع مشابه
Detecting Corporate Financial Fraud using Beneish M-Score Model
Detecting financial fraud is an important issue and ignoring this issue may cause financial and non-financial losses to individuals and organizations. The aim of this study is to test the ability of Beneish M-Score Model for detecting financial fraud among companies listed on Tehran stock exchange. The research sample consists of 137 companies listed on Tehran Stock Exchange for a period of 11 ...
متن کاملProviding a Model for Detecting Tax Fraud Based on the Personality Types of Corporate Financial Managers using the Neural Network Approach
One of the management measures to reduce tax liabilities is non-payment of taxes through tax fraud. Because personality factors may play a role in explaining tax ethics, examining personality traits and aspects of tax fraud can help to better understand the factors that influence tax decisions. The main purpose of this study is to provide a model for detecting tax fraud based on the personality...
متن کاملDesigning a Model for Preventing and Controlling Fraud based on Grounded Theory
The main objective of the present research is to present a comprehensive model and prevent fraud based on the cultural, economic and political characteristics of Iranian companies. This study is a type of qualitative research which is based on the theorizing theory and the study of library studies. The statistical population of the present study is experts on fraud and its preventive methods....
متن کاملFinancial Reporting Fraud Detection: An Analysis of Data Mining Algorithms
In the last decade, high profile financial frauds committed by large companies in both developed and developing countries were discovered and reported. This study compares the performance of five popular statistical and machine learning models in detecting financial statement fraud. The research objects are companies which experienced both fraudulent and non-fraudulent financial statements betw...
متن کاملA hybrid model based on machine learning and genetic algorithm for detecting fraud in financial statements
Financial statement fraud has increasingly become a serious problem for business, government, and investors. In fact, this threatens the reliability of capital markets, corporate heads, and even the audit profession. Auditors in particular face their apparent inability to detect large-scale fraud, and there are various ways to identify this problem. In order to identify this problem, the majori...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Management Science
دوره 56 شماره
صفحات -
تاریخ انتشار 2010